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Finite-size scaling �FSS� of the five-dimensional �d=5� Ising model is investigated numerically. Because of
the hyperscaling violation in d�4, FSS of the d=5 Ising model no longer obeys the conventional scaling
relation. Rather, it is expected that the FSS behavior depends on the geometry of the embedding space
�boundary condition�. In this paper, we consider a cylindrical geometry and explore its influence on the

correlation length �=L�f��Lyt
*
,HLyh

*
� with system size L, reduced temperature �, and magnetic field H; the

indices yt,h
* and � characterize FSS. For that purpose, we employed the transfer-matrix method with Novotny’s

technique, which enables us to treat an arbitrary �integral� number of spins, N=8,10, . . . ,28; note that, con-
ventionally, N is restricted in N�=Ld−1�=16,81,256, . . .. As a result, we estimate the scaling indices as
�=1.40�15�, yt

*=2.8�2�, and yh
*=4.3�1�. Additionally, postulating �=4/3, we arrive at yt

*=2.67�10� and
yh

*=4.0�2�. These indices differ from the naively expected ones �=1, yt
*=2 and yh

*=3. Rather, our data support
the generic formulas �= �d−1� /3, yt

*=2�d−1� /3, and yh
*=d−1, advocated for a cylindrical geometry in

d�4.
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I. INTRODUCTION

The criticality of the Ising model above the upper critical
dimension �d�4� belongs to the mean-field universality
class. However, the finite-size effect—namely, the finite-
size-scaling behavior—is not quite universal because of vio-
lation of hyperscaling in d�4. �From a renormalization-
group viewpoint, this peculiarity is attributed to the presence
of a “dangerous irrelevant variable” �1–3�.� Actually, it is
expected that the embedding geometry of the system �bound-
ary condition� would affect the finite-size-scaling behavior
for d�4 �4–11�.

Recently, Jones and Young performed an extensive Monte
Carlo simulation for the d=5 Ising model embedded in the
�periodic� hypercubic geometry �12�. They calculated the
correlation length � with Kim’s technique �13�. �Because the
calculation of � requires a computational effort, Binder’s cu-
mulant ratio rather than � has been studied extensively so far
�7–9�.� They found that the correlation length � obeys the
scaling relation

� = L�f��Lyt
*
� , �1�

with the linear dimension L and the reduced temperature �.
They found that the scaling indices are in good agreement
with the theoretical prediction �4–6�

� = 5/4, yt
* = 5/2. �2�

Notably enough, their indices exclude the naively ex-
pected values �=1 and yt

*=2. That is, the correlation length
��L� exceeds the system size L at the critical point �=0 as
L→�. �In other words, the spin-wave excitation costs very
little energy for large L.� Such a peculiarity should be attrib-
uted to violation of the conventional scaling relation �hyper-
scaling� in d�4. It would be intriguing if the above formula
were cast into the expression �7�

� = lf��l2� , �3�

with the replacements l=L� and yt
*=2�. The expression is

now reminiscent of the conventional scaling relation ex-
pected for the mean-field universality class. Namely, viola-
tion of hyperscaling is reconciled �absorbed� by the replace-
ments and the scaling indices, � and yt

* characterize the
anomaly quantitatively. So far, numerous considerations
have been made �7–9,12� for the hypercubic geometry, where
the Monte Carlo method works very efficiently.

In this paper, we investigate the d=5 Ising model embed-
ded in a cylindrical geometry; namely, we consider a system
with infinite system size along a particular direction. Clearly,
the transfer-matrix method suits well the exploitation of such
a geometry. However, practically, the transfer-matrix method
does not apply very well in large dimensions d�3 because
of its severe limitation as to available system sizes.

In order to resolve this limitation, we implemented
Novotny’s technique �14–18�, which enables us to treat
an arbitrary number of system sizes N=8,10, . . . ,28;
here, the system size N denotes the number of constituent
spins within a unit of the transfer matrix �Fig. 1�. Note
that, conventionally, the system size is restricted to
N�=Ld−1�=16,81,256, . . ., which soon exceeds the limit of
available computer resources. Such an arbitrariness allows us
to treat a variety of system sizes and manage systematic
finite-size-scaling analysis. Actually, with the scaling analy-
sis, we obtained the indices �=1.40�15�, yt

*=2.8�2�, and
yh

*=4.3�1�. Moreover, postulating �=4/3, we obtained
yt

*=2.67�10� and yh
*=4.0�2�. �Here, the exponent yh

* denotes
the scaling dimension of the magnetic field. Our scaling re-
lation, Eq. �13�, incorporates the magnetic field H and the
corresponding scaling index yh

*.� Obviously, our results ex-
clude the naively expected ones �=1, yt

*=2, and yh
*=3.

Rather, our data seem to support the generic formulas �4–6�
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� =
d − 1

3
, yt

* = 2
d − 1

3
, yh

* = d − 1, �4�

advocated for a cylindrical geometry in d�4. Actually, our
data deviate from the above-mentioned values for the hyper-
cubic geometry, Eq. �2�, indicating that the embedding
geometry is indeed influential upon the finite-size scaling.

In fairness, it has to be mentioned that Novotny obtained
�+yt

*�d−1 �14,17�. He postulated �= �d−1� /3 in order to
fix the location of the critical point. In this paper, we do not
rely on any propositions and estimate the indices indepen-
dently. For that purpose, we calculated the cumulant ratio to
get information on the critical point. Moreover, we treated
system sizes up to N=28, which is substantially larger than
that of Ref. �17�, N	13. Here, we made use of an equiva-
lence between the d=5 Ising model and the quantum d=4
Ising model; the latter is computationally less demanding.
We also eliminated insystematic finite-size corrections by
tuning extended coupling constants; see our Hamiltonian �5�.
In this respect, the motivation of the present research is well
directed to methodology.

The rest of this paper is organized as follows. In
Sec. II, we explain our simulation scheme in detail. In Sec.
III, we manage the finite-size-scaling analyses of the simu-
lation data. In the last section, we present a summary and
discussions.

II. NUMERICAL METHOD

In this section, we explain the numerical method.
First, we argue the reduction of the d=5 Ising model to
the d=4 quantum transverse-field Ising model. The reduced
�quantum-mechanical� model is much easier to treat numeri-
cally. Second, we explicate Novotny’s transfer-matrix

method. We place an emphasis how we extended his
formalism to adopt the quantum-mechanical interaction.

A. Reduction of the classical d=5 Ising model to the d=4
quantum counterpart

The d-dimensional Ising model reduces to the
�d−1�-dimensional transverse-field Ising model; in general,
the d-dimensional classical system has its �d−1�-
dimensional quantum counterpart �19�. Such a reduction is
based on the observation that the transfer-matrix direction
and the �quantum� imaginary-time evolution have a close
relationship. Actually, the quantum Hamiltonian is an infini-
tesimal generator of the transfer matrix. Because the quan-
tum Hamiltonian contains few nonzero elements, its diago-
nalization requires reduced computational effort. The
significant point is that the universality class �criticality� is
maintained through the mapping.

To be specific, we consider the following d=4 transverse-
field Ising model with the extended interactions. The
Hamiltonian is given by

H = − J1�
�ij	


i
z
 j

z − J2 �
��ij		


i
z
 j

z − J3�
�ij�


i
z
 j

z − J4 �
��ij��


i
z
 j

z

− ��
i


i
x − H�

i


i
z. �5�

Here, the operators 

i
�� denote the Pauli matrices placed at

the d=4 hypercubic lattice points i. The parameters � and H
stand for the transverse and longitudinal magnetic fields, re-
spectively. The summations ��ij	, ���ij		, ��ij�, and ���ij�� run
over all possible nearest-neighbor pairs, next-nearest-
neighbor �plaquette diagonal� pairs, third-neighbor pairs, and
fourth-neighbor pairs, respectively. The parameters 
Ji�
�i=1,2 ,3 ,4� are the corresponding coupling constants.
Hereafter, we regard J1 as a unit of energy �J1=1� and tune
the remaining coupling constants J2,3,4 so as to eliminate the
insystematic finite-size errors; see Sec. III.

We simulate the above d=4 quantum Ising model with
the numerical diagonalization method. The diagonalization
of such a high-dimensional system requires huge computer-
memory space. In fact, the number of spins constituting
the d=4 cluster increases very rapidly as N=16,81,256, . . .,
overwhelming the available computer resources. In the
next section, we resolve this difficulty through resorting to
Novotny’s transfer-matrix formalism.

B. Constructions of the Hamiltonian matrix elements

In this section, we present an explicit representation for
the Hamiltonian �5�. We make use of Novotny’s method �14�,
which enables us to treat an arbitrary number of spins con-
stituting a unit of the transfer matrix. Novotny formulated
the idea for the classical Ising model. In this paper, we show
that his idea is applicable to the quantum Ising model, Eq.
�5�, as well.

Before we commence a detailed discussion, we explain
the basic idea of Novotny’s method. In Fig. 1, we present
a schematic drawing of a unit of the transfer matrix for

FIG. 1. Construction of the spin cluster for the quantum
transverse-field Ising model, Eq. �5�. For simplicity, we consider the
case of d=2. As indicated above, the spins constitute a d=1 dimen-
sional alignment 

i� �i=1,2 , . . . ,N�, and the dimensionality is
lifted to d=2 by introducing the bridges �long-range interactions�
over the �N1/2�th and �1+N1/2�th neighbor pairs; these interactions
correspond to the nearest-neighbor and next-nearest-neighbor inter-
actions, respectively, with respect to the d=2 cluster. In the case of
d=4, we consider the �N1/4�th, �N1/2�th, and �N3/4�th neighbor in-
teractions; see Eq. �8� for details. This idea—namely, Novotny’s
method—was first developed for the classical Ising model �14�. We
apply this method to the quantum system.
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the Ising model in d=3 �rather than d=5 for the sake of
simplicity�. Because the cross section of the d=3 dimen-
sional bar is d=2 dimensional, the transfer-matrix unit
should have a d=2 dimensional structure. However, in Fig.
1, the spins 

i� �
i= ±1, i=1,2 , . . . ,N� constitute a d=1
dimensional �zigzag� structure. This feature is essential for
us to construct the transfer-matrix unit with an arbitrary �in-
tegral� number of spins. The dimensionality is lifted to
d=2 effectively by the long-range interactions over the
�Nth-neighbor pairs; owing to the long-range interaction, the
N spins constitute a �N�N rectangular network. �The sig-
nificant point is that the number �N is not necessarily an
integral nor rational number.� Similarly, the bridge over
��N±1�th neighbor pairs introduces the next-nearest-
neighbor �plaquette diagonal� couping with respect to the
�N�N network.

We apply this idea to the case of the d=4 quantum sys-
tem. To begin with, we set up the Hilbert-space bases


1 ,
2 , . . . ,
N	� �
i= ±1� for the quantum spins 

i

��
�i=1,2 , . . . ,N�. These bases diagonalize the operator 
 j

z;
namely,


 j
z

i�	 = 
 j

i�	 �6�

holds.
We consider the one- and two-body interactions sepa-

rately. Namely, we decompose the Hamiltonian �5� into two
sectors,

H = H�2��
Ji�� + H�1���,H� . �7�

The component H�2� originates from the spin-spin interac-
tion, which depends on the exchange couplings 
Ji�. On the
other hand, the contribution H�1� comes from the single-spin
terms, depending on the magnetic fields � and H.

First, we consider H�2�. This component concerns the mu-
tual connectivity among the N spins, and we apply Novot-
ny’s idea to represent the matrix elements. We propose the
following expression:

H�2� =
J1

2 �
�̃=±�,��A

H��̃� +
J2

2 �
�,��A

�
�̃=±�

�
�̃=±�

H��̃ + �̃�

+
J3

2 �
�,�,��A

�
�̃=±�

�
�̃=±�

�
�̃=±�

H��̃ + �̃ + �̃�

+
J4

2 �
�̃=±1

�
�̃=±N1/4

�
�̃=±N1/2

�
�̃=±N3/4

H��̃ + �̃ + �̃ + �̃� .

�8�

Here, the set A consists of the elements
A= 
1,N1/4 ,N1/2 ,N3/4�. The component H�v� denotes the
vth-neighbor interaction for the N-spin alignment,

H

i�,
�i�
�v� = �

i�H�v�
�i�	 = �

i�TPv
�i�	 , �9�

with the exchange-interaction matrix

�

i�T
�i�	 = − �
k=1

N


k�k �10�

and the translational operator P satisfying

P

i�	 = 

i+1�	 �11�

under the periodic boundary condition. The insertion of Pv

beside the T operation is a key element to introduce the
coupling over the vth-neighbor pairs. The denominator 2 in
Eq. �8� compensates the duplicated sum.

Let us explain the meaning of the above formula, Eq. �8�,
more in detail. As shown in Fig. 1, in the case of d=2, we
made bridges over �N1/2�th-neighbor pairs to lift up the di-
mensionality to d=2 effectively. In the case of d=4, by anal-
ogy, we introduce the interaction distances such as v=1,
N1/4, N1/2, and N3/4. The first term in Eq. �8� thus represents
the nearest-neighbor interactions �with respect to the d=4
dimensional cluster�. Similarly, the remaining terms intro-
duce the long-range interactions. For example, the compo-
nent H�1+N1/4� introduces the next-nearest-neighbor
�plaquette diagonal� interaction. We emphasize that the idea
of Novotny is readily applicable to the quantum model.
�In short, our �quantum mechanical� formulation is additive.
On the contrary, Novotny’s original formulation is multipli-
cative, because his original formulation concerns the
Boltzmann weight rather than the Hamiltonian itself.�

Last, we consider the one-body part H�1�. The matrix
element is given by the formula

H

i�,
�i�
�1� = �

i�H�1�
�i�	 . �12�

The expression is quite standard, because the component
H�1� simply concerns the individual spins and has nothing to
do with the connectivity among them.

The above formulas complete our basis to simulate the
quantum Hamiltonian �5� numerically. In the next section,
we perform a numerical simulation for N=8,10, . . . ,28.

III. NUMERICAL RESULTS

In Sec. II, we set up an explicit expression for the Hamil-
tonian �5�; see Eqs. �8� and �12�. In this section, we diago-
nalize the Hamiltonian for N=8,10, . . . ,28 with the Lanczos
algorithm. We calculated the first-excitation energy gap �E
�rather than ��. The scaling relation for �E is given by

�E = L−�g��Lyt
*
,HLyh

*
� , �13�

because �E�1/� holds. �As compared to Eq. �1�, our scal-
ing relation is extended to include the magnetic field H as
well as the corresponding scaling index yh

*.� The reduced
temperature � is given by �=�−�c with the critical point �c.
Note that the linear dimension L satisfies L=N1/4, because
the N spins constitute the d=4 dimensional cluster.

We fix the interaction parameters to

�J1,J2,J3,J4� = �1,0.15,0.05,0.05� �14�

and scan the transverse magnetic field �. �We will also pro-
vide data for �J1 ,J2 ,J3 ,J4�= �1,0 ,0 ,0� and �1, 0.1, 0.1, 0.05�
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as a reference.� The interaction parameters, Eq. �14�, are op-
timal in the sense that the insystematic finite-size errors are
suppressed satisfactorily.

A. Scaling behavior of Binder’s cumulant ratio
and the transition point

Because the scaling relation, Eq. �13�, contains a number
of free parameters, it is ambiguous to determine these param-
eters simultaneously. Actually, in Refs. �14,17�, the author
fixed �=4/3 to determine the index yt

*.
In this paper, we estimate the scaling indices indepen-

dently without resorting to any postulations. For that pur-
pose, we calculated an additional quantity, namely, Binder’s
cumulant ratio �20�

U = 1 −
�M4	

3�M2	2 , �15�

to determine the location of �c. Here, the brackets �¯	 de-
note the expectation value at the ground state. The magnetic
moment M is given by M =�i=1

N 
i
z. Because the cumulant

ratio is dimensionless ��=0�, it obeys a simplified scaling
relation

U = Ũ��Lyt
*
,HLyh

*
� . �16�

Hence, the intersection point of the cumulant-ratio curves
indicates a location of the critical point. The scaling relation
for the cumulant ratio, Eq. �16�, has been studied extensively
for the d=5 hypercubic geometry with the Monte Carlo
method �7–9,12�.

In Fig. 2, we plot the cumulant ratio for various � and
N=8,10, . . . ,28 with H=0 fixed; as mentioned above, we
fixed the exchange-coupling constants 
Ji� to Eq. �14�. From
the scale-invariant �intersection� point of the curves in Fig. 2,
we observe a clear indication of criticality at �c�12.5. In the
subsequent analysis of Sec. III B, we make use of this infor-
mation to determine the scaling indices.

This is a good position to address why we fixed the ex-
change couplings to Eq. �14�. As a comparison, we present
the cumulant ratio for various � and N=8,10, . . . ,28 in

Fig. 3, where we tentatively turn off the extended couplings
J2,3,4=0. Clearly, the data are scattered as compared to
those of Fig. 2. Such data scatter obscures the onset of the
phase-transition point and prohibits a detailed data analysis
of criticality. In order to improve the finite-size behavior, we
surveyed the parameter space 
Ji� and found that the choice
�14� is an optimal one. Such as elimination of finite-size
errors has been utilized successfully in recent numerical
studies �21,22�.

B. Critical exponent �

Provided by the information on �c �Fig. 2�, we are able to
determine the scaling indices from the scaling relation �13�.
In this section, we consider the index �.

In Fig. 4, we plot the approximate index

��L1,L2� = −
ln��E�N1�/�E�N2���=�c�L1,L2�

ln�L1/L2�
�17�

for �2/ �L1+L2��3 with 8	N1�N2	28; note that L1,2=N1,2
1/4

holds. The parameters are the same as those of Fig. 2. The
approximate transition point �c�L1 ,L2� is given by the inter-
section point of the cumulant ratio for a pair of �N1 ,N2�;
namely, it satisfies

FIG. 2. Binder’s cumulant ratio U, Eq. �15�, is plotted for the
transverse magnetic field � and the system sizes N=8,10, . . . ,28
with fixed exchange couplings, Eq. �14�. We observe a clear indi-
cation of criticality at �c�12.5. Apparently, the finite-size-scaling
behavior is improved as compared to that of Fig. 3, where we
turned off the extended interactions J2,3,4=0.

FIG. 3. Tentatively, we turned off the extended interactions
�J2,3,4=0� and calculated the cumulant ratio U, Eq. �15�, for various
� and N=8,10, . . . ,28. We notice that the data are scattered as
compared to those in Fig. 2.

FIG. 4. The approximate critical index ��L1 ,L2�, Eq. �17�, is
plotted for �2/ �L1+L2��3 with 8	N1�N2	28 �L1,2=N1,2

1/4�; the pa-
rameters are the same as those of Fig. 2. The least-squares fit to
these data yields �=1.403�46� in the thermodynamic limit L→�.
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U„N1,�c�L1,L2�… = U„N2,�c�L1,L2�… . �18�

The least-squares fit to these data yields �=1.403�46� in the
thermodynamic limit. We carried out a similar data analysis
for �J2 ,J3 ,J4�= �0.1,0.1,0.05� and obtained �=1.494�21�.
As an error indicator, we accept the difference between them.
As a consequence we estimate the index as

� = 1.40�15� . �19�

Let us make a number of remarks. First, our result ex-
cludes the naively expected one �=1. Actually, the result
��1 indicates that the correlation length L� develops more
rapidly than the system size L enlarges. This feature may
reflect the fact that the spin waves cost very little energy for
large L. Second, our result supports the generic formula
�=4/3, Eq. �4�, advocated for a cylindrical geometry in
d�4 �4–6�. On the contrary, it deviates from that of the
hypercubic geometry �2�; we confirm this observation in the
following sections. Last, the validity of the abscissa scale
�extrapolation scheme� 1/L3 in Fig. 4 is not clear. In Sec.
III D, we inquire into the validity of the extrapolation
scheme.

C. Critical exponents yt
* and yh

*

In Figs. 5 and 6, we plot the approximate indices

− ��L1,L2� + yt
*�L1,L2� =

ln����E�N1�/���E�N2���=�c�L1,L2�

ln�L1/L2�
�20�

and

− ��L1,L2� + 2yh
*�L1,L2�

=
ln��H

2 �E�N1�/�H
2 �E�N2��H=0,�=�c�L1,L2�

ln�L1/L2�
, �21�

respectively, for �2/ �L1+L2��3 with 8	N1�N2	28;
the parameters are the same as those of Fig. 2. The
least-squares fit to these data yields the estimates
−�+yt

*=1.396�21� and −�+2yh
*=7.198�39� in the thermo-

dynamic limit. Similarly for �J2 ,J3 ,J4�= �0.1,0.1,0.05�,

we obtained −�+yt
*=1.359�12� and −�+2yh

*=7.211�24�.
Consequently, we estimate the scaling indices as
−�+yt

*=1.4�1� and −�+2yh
*=7.2�1�. Combining them with

�=1.40�15�, Eq. �19�, we arrive at

yt
* = 2.8�2� �22�

and

yh
* = 4.3�1� . �23�

Again, our data exclude the naively expected values
yt

*=2 and yh
*=3. Rather, our estimates are comparable with

the generic formula, Eq. �4�; actually, the estimate
yt

*=2.8�2� is quite consistent with the prediction yt
*=8/3, Eq.

�4�, whereas the result yh
*=4.3�1� and the formula yh

*=4, Eq.
�4�, are rather out of the error margin. We attain more satis-
factory agreement between the numerical result and the for-
mula by the data analysis under the assumption �=4/3 in
the next section. On the contrary, our data conflict with the
values, Eq. �2�, anticipated for the hypercubic geometry.
Hence, the data suggest that the embedding geometry is in-
fluential on the finite-size scaling above the upper critical
dimension. We confirm this issue more in detail in the next
section.

D. Scaling indices yt
* and yh

* under the assumption �=4/3

In Sec. III B, we obtained an estimate �=1.40�15�, being
in good agreement with the formula �=4/3, Eq. �4�. In this
section, we assume �=4/3 �4� and estimate the remaining
indices yt

* and yh
* under this hypothesis.

In Fig. 7, we plot the approximate index

yt
*�L1,L2� =

ln���U�N1�/��U�N2���=�̃c�L1,L2�

ln�L1/L2�
�24�

for the abscissa scale �2/ �L1+L2��3 with 8	N1�N2	28;
the parameters are the same as those of Figs. 4–6. Because
we assumed �=4/3 �4�, we are able to determine the ap-

proximate critical point �̃c�L1 ,L2� from the fixed point of
L4/3�E�L�; namely,

FIG. 5. The approximate critical index −��L1 ,L2�+yt
*�L1 ,L2�,

Eq. �20�, is plotted for �2/ �L1+L2��3 with 8	N1�N2	28
�L1,2=N1,2

1/4�; the parameters are the same as those of Fig. 2. The
least-squares fit to these data yields −�+yt

*=1.396�21� in the
thermodynamic limit L→�.

FIG. 6. The approximate critical index −��L1 ,L2�+2yh
*�L1 ,L2�,

Eq. �21�, is plotted for �2/ �L1+L2��3 with 8	N1�N2	28
�L1,2=N1,2

1/4�; the parameters are the same as those of Fig. 2. The
least-squares fit to these data yields −�+2yh

*=7.198�39� in the
thermodynamic limit L→�.
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L1
4/3�E„N1,�̃c�L1,L2�… = L2

4/3�E„N2,�̃c�L1,L2�… . �25�

We notice that the data exhibit improved convergence to the
thermodynamic limit. The least-squares fit to these data
yields yt

*=2.671�49� in the thermodynamic limit. Similarly,
we obtained yt

*=2.697�42� for �J2 ,J3 ,J4�= �0.1,0.1,0.05�.
Consequently, we estimate

yt
* = 2.67�10� . �26�

This result is consistent with the above estimate yt
*=2.8�2�,

Eq. �22�, confirming the reliability of our analyses in Figs.
4–6. It is also in good agreement with the prediction
yt

*=8/3, Eq. �4�. On the contrary, our estimate excludes the
exponent yt

*=5/2, Eq. �2�, advocated for the hypercubic
geometry.

Similarly, in Fig. 8, we plot the approximate index

yh
*�L1,L2� =

1

2

ln��H
2 U�N1�/�H

2 U�N2��H=0,�=�̃c�L1,L2�

ln�L1/L2�
�27�

for the abscissa scale �2/ �L1+L2��3 with 8	N1�N2	28;
the parameters are the same as those of Figs. 4–6. The data
exhibit an appreciable systematic finite-size deviation. The

least-squares fit to these data yields yh
*=4.021�60�. Similarly,

we obtained yh
*=4.148�36� for �J2 ,J3 ,J4�= �0.1,0.1,0.05�.

Consequently, we estimate

yh
* = 4.0�2� . �28�

Again, the result is quite consistent with the prediction
yh

*=4, Eq. �4�. In other worlds, this agreement indicates that
the extrapolation scheme �abscissa scale� 1/L3 is sensible.

Let us make a few remarks. First, the data in Figs. 7 and
8 exhibit suppressed finite-size corrections owing to the
assumption �=4/3. This feature was observed in Refs.
�14,17�, where the author estimated yt

* reliably using
�= �d−1� /3; see the Introduction. Our analysis shows that
the assumption yields a reliable estimate for yh

* as well as yt
*.

Second, our data confirm the self-consistency of our analyses
performed in Figs. 4–8. Particularly, the data justify the ex-
trapolation scheme with the abscissa scale 1 /L3. As a matter
of fact, in Ref. �23�, the authors observed notable finite-size

corrections to the cumulant ratio U obeying Ld−2yh
*
. In our

case �d=5 cylindrical geometry�, the power should read
d−2yh

*=−3. Hence, our numerical data support their claim.
Last, as to the convergence of U to the thermodynamic limit,
there arose controversies �24–32�; it has been reported that
there appear unclarified finite-size corrections to U, which
prohibit us from making a reliable extrapolation to the ther-
modynamic limit. In this paper, we avoided this subtlety by
eliminating finite-size errors with the �finitely tuned� ex-
tended interactions; see Figs. 2 and 3. We consider that such
a technique would be significant for the study of high-
dimensional systems, where the available system size is
restricted.

IV. SUMMARY AND DISCUSSIONS

We studied the finite-size-scaling behavior of a d=5 Ising
model embedded in a cylindrical geometry. Our aim is to see
the influence of the embedding geometry �boundary condi-
tion� on the scaling relation, Eq. �13�; the embedding geom-
etry should alter the scaling indices � and yt,h

* above d�4
�4–6�. For that purpose, we employed the transfer-matrix
method �Sec. II� and implemented Novotny’s technique �14�
to treat a variety of system sizes N=8,10, . . . ,28. Moreover,
we made use of an equivalence between the d=5 �classical�
Ising model and its d=4 quantum counterpart; the latter ver-
sion is computationally less demanding with the universality
class retained.

We analyzed the simulation data with the finite-size scal-
ing relation, Eq. �13�, and obtained the scaling indices as
�=1.40�15�, yt

*=2.8�2�, and yh
*=4.3�1�. Additionally, under

�=4/3, we estimate yt
*=2.67�10� and yh

*=4.0�2�. The indi-
ces exclude the naively expected ones �=1, yt

*=2, and
yh

*=3, reflecting violation of hyperscaling in large dimen-
sions. Clearly, our data support the generic formulas, Eq. �4�,
advocated for the cylindrical geometry in d�4 �4–6�. On the
contrary, our data conflict with the values for the hypercubic
geometry, Eq. �2�. Our result demonstrates that the embed-
ding geometry is indeed influential on the scaling indices.

Last, let us make a few remarks. First, we stress that
violation of hyperscaling above the upper critical dimension

FIG. 7. The approximate critical index yt
*�L1 ,L2�, Eq. �24�, is

plotted for �2/ �L1+L2��3 with 8	N1�N2	28 �L1,2=N1,2
1/4�; the pa-

rameters are the same as those of Fig. 2. The least-squares fit to
these data yields yt

*=2.671�49� in the thermodynamic limit L→�.
The result is consistent with Eq. �22�, confirming the reliability of
our analysis.

FIG. 8. The approximate critical index yh
*�L1 ,L2�, Eq. �27�, is

plotted for �2/ �L1+L2��3 with 8	N1�N2	28 �L1,2=N1,2
1/4�; the pa-

rameters are the same as those of Fig. 2. The least-squares fit to
these data yields yh

*=4.021�60� in the thermodynamic limit L→�.
The result is consistent with the prediction �4�.
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d̃ is not necessarily an issue of pure academic interest. For
example, a class of long-range interactions �23� suppresses
the upper critical dimension to an experimentally accessible

regime d̃�3. Second, there arose controversies �24–32� con-
cerning the subdominant finite-size effect �corrections to

scaling� above d̃. More specifically, the Binder-cumulant
data exhibit unexpectedly slow convergence to the thermo-
dynamic limit. In this paper, we avoided this subtlety by
extending �tuning� the exchange-coupling constants to Eq.
�14�, where we observed eliminated finite-size errors. Actu-

ally, from Figs. 2 and 3, we notice that the elimination was
successful. Our data indicate that the �dominant� finite-size
errors obey the power law L−3 as claimed in Ref. �23�. We
consider that the elimination of finite-size errors is signifi-
cant for the study of high-dimensional systems, where the
available system size is restricted severely.
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